A non-hyponormal operator generating Stieltjes moment sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On powers of Stieltjes moment sequences, I

For a Bernstein function f the sequence sn = f(1)·. . .·f(n) is a Stieltjes moment sequence with the property that all powers sn, c > 0 are again Stieltjes moment sequences. We prove that sn is Stieltjes determinate for c ≤ 2, but it can be indeterminate for c > 2 as is shown by the moment sequence (n!)c, corresponding to the Bernstein function f(s) = s. Nevertheless there always exists a uniqu...

متن کامل

On powers of Stieltjes moment sequences, II

We consider the set of Stieltjes moment sequences, for which every positive power is again a Stieltjes moment sequence, we and prove an integral representation of the logarithm of the moment sequence in analogy to the Lévy-Khintchine representation. We use the result to construct product convolution semigroups with moments of all orders and to calculate their Mellin transforms. As an applicatio...

متن کامل

Stieltjes Moment Sequences and Positive Definite Matrix Sequences

For a certain constant δ > 0 (a little less than 1/4), every function f : N0 → ]0,∞[ satisfying f(n)2 ≤ δf(n − 1)f(n + 1), n ∈ N, is a Stieltjes indeterminate Stieltjes moment sequence. For every indeterminate moment sequence f : N0 → R there is a positive definite matrix sequence (an) which is not of positive type and which satisfies tr(an+2) = f(n), n ∈ N0. For a certain constant ε > 0 (a lit...

متن کامل

A transformation from Hausdorff to Stieltjes moment sequences

We introduce a non-linear injective transformation T from the set of non-vanishing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences by the formula T [(an)]n = 1/(a1 · . . . · an). Special cases of this transformation have appeared in various papers on exponential functionals of Lévy processes, partly motivated by mathematical finance. We give several exa...

متن کامل

On generating functions of Hausdorff moment sequences

The class of generating functions for completely monotone sequences (moments of finite positive measures on [0, 1]) has an elegant characterization as the class of Pick functions analytic and positive on (−∞, 1). We establish this and another such characterization and develop a variety of consequences. In particular, we characterize generating functions for moments of convex and concave probabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2012

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2012.02.006